If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+48x+256=0
a = 2; b = 48; c = +256;
Δ = b2-4ac
Δ = 482-4·2·256
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-16}{2*2}=\frac{-64}{4} =-16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+16}{2*2}=\frac{-32}{4} =-8 $
| k+7=26 | | -2(t-7.11)=4.22 | | k7=2 | | 3u–90=u | | y+5.81=8.45 | | 24=p*120 | | 5(x+10)+2x+3(2x)=50 | | 12(8c-3)=2c-4 | | 6-2x/2+4x=12 | | 6x-10=-x+32 | | 12^(y-2)=20 | | x-5.45=4.19 | | 5+(1.8x)=12 | | 7–3x+4=5x–1+4x | | .5(6x-1)=3x | | v-1.53=6.6 | | 12x+3=-12+3+24x | | 4x+4/6=x+7/3 | | 17g=289 | | -23+g=96 | | 5(h-1)=10h | | d+42=71 | | -2m+4m-8=-10+m-7m | | -4s=8(-s-7) | | 59-x=244 | | 9(q-2)=3(q+3)+3 | | -2(7y-9)3y=−37 | | 7(d+6)=-6-5d | | 5x-4=14x-94x= | | x=28-11/28 | | 7+3f=-8f+9-2 | | 14-2.5x-5x=7.5x-16 |